ZERO NANOTECH

Applications of the Cesium Low Temperature Ion Source (LoTIS) *High Resolution FIB and SIMS*

<u>Adam V Steele</u>, zeroK Brenton Knuffman, zeroK AD Schwarzkopf, zeroK

adam@zeroK.com

Visit us at <u>www.zeroK.com</u>

Download the slides at <u>www.zeroK.com/news</u>

M&M 2021

Technology Highlights

LoTIS is a new Cs⁺ ion source AV Steele, et al., Nano Futures, Volume 1, Number 1 (2017)

A LoTIS FIB instrument has been built and tested

- Successful circuit edits on 10 nm node chips
- Imaging and milling demonstrations

LoTIS Beam Performance

- Demonstrated 2 nm spots with 1 pA, at 10 kV beam
- Provides currents >10 nA (so far)
- 1 kV to 18 keV

2

- Performs very well at low-energy relative to Ga⁺
- Yields large numbers of secondary ions

Available in FIB and SIMS variants

FIB:ZERO

Modified Thermo-Fischer v600 platform

2 nm resolution at 1 pA, 10 keV (2-3x better spot sizes and at 3x lower beam energy than LMIS)

<1 pA to 10+ nA

Platinum GIS (others available)

Generates secondary ion images as well

Demonstrations available

Spot Sizes

Selected Beam Energies and Currents

Results given as a σ

- $d_{50} = 2.2 \sigma$
- $d_{35-65} = \frac{\sigma}{1.3}$,
- $d_{16-84} = 2\sigma$

Spot sizes are about 2x smaller than Helios (Ga⁺) at <10 pA, and at lower energy

Bit worse spot sizes than Zeiss He/Ne, but better machining performance in many cases

Methodology in [1]

[1] A V Steele *et al* 2017 *Nano Futures* **1** 015005 Open access link: <u>https://iopscience.iop.org/article/10.1088/2399-1984/aa6a48</u>

16	kV	8 kV			
Current (pA)	Spot Size (1- σ nm)		Current (pA)	Spot Size (1- σ nm)	
1.5	<2.0		1.5	2.3	
3.0	2.3		3	2.5	
10	4.0		10	4.7	
30	7.5		30	7.6	
100	23		100	55	
300	57		300	150	
1000	175		1000	244	
5500	580		2600	510	

Low-Energy

Energy (kV)	Current (pA)	Spot Size (1- σ nm)		
5	3.5	15		
2	3.5	44		

Depth of Focus Comparison

(Results on slides that follow)

"Wood Pile" Nanostructures

- Heights: 40 μm, 80 μm, 120 μm
- In the following slides we acquire an image containing both the top and bottom of such the 120 µm (tallest) structure
- We can compare the depth of focus of various beams by comparing the 'blurriness' of the top of the structure

A better depth of focus aids in the milling and imaging of 'deep' or 'tall' structures.

		50			80.46 µm (cs)	Ī			la fi	Nano Struct
HV 2.00 kV	curr 0.10 nA	dwell 10 µs	det ETD	mode SE	WD 3.8 mm	tilt 52 °	mag ⊞ 200 x	HFW 1.04 mm	TU Kaiserslautern NSC Τ. Loeber	

FEI: SEM image

M&M 2021

TECHNISCHE UNIVERSITÄT

Depth of Focus Comparison →LoTIS depth of focus substantially better than Ga

Ga⁺ LMIS (30 kV)

Cs⁺ LoTIS (10 kV)

"Wood Pile" Height 120 µm

ZERØK

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Milling Homogeneity: 150 nm Au on Si \rightarrow Cs⁺ LoTIS proves even touchdown

Milled with Ga⁺ LMIS

Milled with Cs⁺ LoTIS

5 92 um

TU Kaiserslautern NSC T. Loebe

- milled rectangle 'almost through' the Au layer
- milling time Ga and Cs almost the same

Milling Accuracy: 110 nm Au on Si \rightarrow LoTIS provides clean mill boxes with sharp corners

Milled with Ga⁺ LMIS

Technische universität Milled with Cs* LoTIS

- squares with 1, 0.6, 0.4, 0.2, 0.1 and 0.05 μm length
- milled through the Au layer
- milling time Ga and Cs almost the same

FIB:ZERO Cross Section Example

Done with 200 pA beam, 30 pA 'cleanup' afterwards

Platinum Deposition – Narrow Lines \rightarrow FIB:ZERO can provide very narrow metal lines

Pt lines with 100nm width as deposited on Si.

Pt lines after cleanup mill.

Tilted view to show height of Pt lines above Si substrate.

ZERŰ

Pain Points of Existing Elemental Analysis Techniques and a New Solution

EDX/EELS

- Long sample-prep times
- 3D analysis infeasible
- Low-Z elements challenging

Site-Specific SIMS

- Resolution limited to ~50 nm with high yield (CAMECA NanoSIMS), or
- Can get a high resolution FIB (Ga, He, Ne) with a time-of-flight SIMS analyzer. But low secondary ion yields from these beams usually results in poor lateral resolution. Additionally, time-of-flight analyzers necessitate **long** acquisition times.

These points are addressable by **SIMS:ZERO**

- Few-nanometer resolution (slide 17)
- High secondary ion yield (slides 19,20)
- Integrated sample-prep and analysis capability (slides 21-27)

These slides are the first public data presented from SIMS:ZERO

SIMS:ZERO

Instrument Overview

Cs+ FIB:ZERO (zeroK) and SIMS spectrometer (LIST: Luxembourg Institute of Science and Technology) on a 600 series FIB (FEI)

Detectors (4X) Primary Ion Beam Axis (Cs+) Electrostatic 🗸 SI Extraction Sector Optics Secondary Ion Beam Axis (+ or -) Sample

- FIB online 6/2020

Focal Plane

- SIMS online 5/2021

FIB / SIMS Combination

Sample Prep, Nanofabrication / Analysis, Process Control

LoTIS capabilities

- 2-16 keV Cs+ beam
- Up to 5nA beam current
- Spotsize <2nm at low current
- Good spotsizes even at low beam energy

FIB Mode (SIMS Extraction Optics Retracted)

- Milling
- Sample Preparation (eg Sectioning, Polishing)
- Nanofabrication
- Gas-assisted processes (eg Platinum Deposition)
- Tilt stage

SIMS Mode (SIMS Extraction Optics Inserted)

- Highest spatial resolution SIMS imaging
 - $\sigma = 6 \text{ nm}$ demonstrated
- Mass resolution $M/\Delta M = 400$
- Mass range up to 300 amu
- High secondary ion throughput (~40% simulated)
- 4-Channel Detector Standard (Continuous Focal Plane Detector available)

ZERØK

SIMS:ZERO Resolution Tungsten Carbide

- SIMS:ZERO can provide higher resolution SIMS scans than any other instrument
- SIMS resolution is a function of abundance, yield, and spot size
- SIMS:ZERO has a focused ion beam with <3 nm spot size, and since it's Cs⁺ we achieve high yields for many materials
- In samples with high abundances, resolution at near the physical limits of SIMS can be achieved (see right)

Multi_WC_2105121624015_CH1.TIF

$\sigma = 6.1 nm$ (!)

Working Distance = 51.6mm 272s acquisition time.

Negative lons

Date	05/12/2021		
Sample	WC (184 amu)		
FOV (um)	2.97um		
I (pA)	2.5		
U (kV)	16		

SIMS Analysis Example CIGS Cu(In,Ga)Se₂ – Rb doped

<u>Summary</u>

- CIGS is a solar cell absorber material
 - Rubidium doping increases conversion efficiency
- SIMS spectra clearly show all CIGS elements:
 - Cu, In, Ga, Rb in Positive Mode
 - Se in Negative Mode
- Secondary ion imaging channels show distribution of elements in sample, eg Rb dopants concentrated in grain boundaries
- Secondary electron images provide complementary information at high resolution
- Section view technique provides superior SIMS data

Werner, et al. <u>Scientific</u> <u>Reports</u> volume 10, 7530 (2020)

CIGS Cu(In,Ga)Se₂ – Rb doped Mass Spectra – Positive Ions

180

160

140

BScan Pos CIGS 2106231240415.csv Na Rb Cu Ga 105 CH2 104 <u>ස</u> 10³ 10² 10¹ 20 40 60 80 100 120 amu BScan Pos CIGS 2106231240415.csv CsIn Cs CsCu CsGa CsSe? CH3 105 104 cps 10^{3} 10² 10¹

> 200 amu

220

240

260

Start (mT): 30.000000 Stop (mT): 700.000000 Delta (mT): 0.100000 Sampling rate (ms) : 250.000000 Waiting time (s) : 0.250000 Period of beam acq:0 Pos CH1: 100.000675 Pos CH2 : 200.000362 Pos CH3: 299.999717 Pos CH4: 390.000000 Date 06/23/2021 CIGS Sample Aperture Slit 100um 43 FOV (um) 10 I (pA) U (kV) 16

CIGS Cu(In,Ga)Se₂ – Rb doped Mass Spectra – Negative Ions

Start (mT): 30.000000 Stop (mT): 700.000000 Delta (mT): 0.100000 Sampling rate (ms) : 250.000000 Waiting time (s) : 0.250000 Period of beam acq:0 Pos CH1: 100.000675 Pos CH2: 200.000362 Pos CH3: 299.999717 Pos CH4: 390.00000 Date 06/24/2021 Sample CIGS Aperture Slit 100um FOV (um) 43 I (pA) 10 U (kV) 16

SIMS-Compatible Section View 45° Angle Cut - Example

View with Sample Normal to Beam; Ready for SIMS on Section

For many samples, working with a section view is a sensible choice

- 1. Reveal sub-surface structure
- 2. Obtain depth profile data without accumulated topography from uneven sputtering
- Polish rough samples to isolate elemental from topographical contrast
- 4. Build 3D tomographic reconstructions through serial sectioning/polishing

In SIMS:ZERO, sample must be normal to ion beam in SIMS Mode, so section face is cut at 45° to sample surface

SIMS-Compatible Section View 45° Angle Cut – Sample Prep Example

Section Cut with Sample Tilted at 45°

View with Sample Tilted at 45° & Rotated 90°

View with Sample Normal to Beam; Ready for SIMS on Section

CIGS Cu(In,Ga)Se₂ – Rb doped Serial Sectioning / Imaging / Polishing Work-Flow

SE Images

SIMS section, prepared with low surface topography, reveals layer structure (glass, moly, CIGS, Window/Buffer Stack)

After SIMS Imaging, section face develops topography which obscures elemental contrast / distribution information Section face after cleanup mill. Ready for SIMS on next layer

Cs+, 16keV, 10pA, 51.6mm WD

CIGS Cu(In,Ga)Se₂ – Rb doped Section View – Positive Ions

Grain size gradient \downarrow

Ga concentration gradient ↑

SE Image – Post Imaging

Cs+, 16keV, 3.5pA, 51.6mm WD CIGS_Pos_2107151438259.csv

CIGS Cu(In,Ga)Se₂ – Rb doped Section View – Positive Ions

- Na⁺ signal in glass substrate (soda-lime)
- Rb⁺ in CIGS grain boundaries
 - Grain sizes are smaller near Molybdenum (Moly) layer
- Na⁺, Rb⁺ in Moly layer
- In⁺ signal confined to the CIGS & Buffer / Window Stack

Cs+, 16keV, 10pA, 51.6mm WD CIGS_Pos_2107121154464.csv

CIGS Cu(In,Ga)Se₂ – Rb doped Section View – Negative Ions

Cs+, 16keV, 10pA, 51.6mm WD CIGS_Neg_2107121556386.csv

CIGS Cu(In,Ga)Se₂ – Rb doped Section View – Positive Ions

Apparent width of Rubidium signal between grains

Cs+, 16keV, 3.5pA, 51.6mm WD CIGS_Pos_2107151409368.csv

Continuous Detector A SIMS:ZERO Option

- SIMS signals for a given element are split into many lines (e.g. Ti, TiO etc..).
- In discrete-detector systems this leads to a loss of information and lower SNR.
- With continuous detector technology we can sample the entire mass spectrum at once.
- Now we can collect the entire spectrum as in TOF systems, but without painfully long acquisition times.

Data from by a continuous focal plane detector. Mass spectrum (Left) and surface compositional maps (Right). The sample under interrogation was titanium oxide nanoparticles on an indium phosphide substrate.

2000