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- core facility of the TUK
- electron, ion, photo lithography
- sputtering, e-beam deposition, …
- dry and wet etching, analytic, …

Nano Structuring Center



Nano Structuring Center



what we DO

- micro and nano structuring
- developing processes
- supporting students
- training on machines 

Nano Structuring Center

what we DO NOT DO

- developing machines
- modifying systems



- Ga FIB
- many applications possible
- often combined with SEM

Commercially available FIB systems

- LMIS with Eutectic
- Ga, Si, Ge, Au, Li, Bi, …
- dedicated ion writer

www.raith.com



- Xe plasma FIB
- higher currents -> high sputter rates
- large volumes can be milled

Commercially available FIB systems

- helium or neon ions
- high image quality, small SPL
- low sputter rate

www.FEI.com
www.zeiss.com



- unique ion source
- uses laser to cool ions
- chamber like FEI Ga FIB
- acceleration voltage 2 – 16 kV

Low Temperature Cs FIB

ion source



Low Temperature Cs FIB

ZeroK

FEI
additional
laser rack
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Cold atomic beam ion source for focused ion beam applications 
Journal of Applied Physics 114, 044303 (2013)
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B. Knuffman, A. V. Steele, and J. J. McClelland



- 2 step ionization
- only in focus of both lasers
- laser power can be changed
- laser beam diameter can be 

changed
- ion beam can be changed 

continuously
- no aperture needed

- minimal T ≈ 30 µK
- energy spread ∆E = 0.45 eV
- accl. voltage U = 2 - 16 kV 
- ion beam pA to nA

Ionization



Comparison

Ga FIB Helium FIB Plasma FIB Cs FIB

energy spread [eV] 3 - 5 1 3.5 0.45

accelleration voltage [kV] 30 30 30 2 - 16

brightness
[106 A m-2 sr-1 eV-1] 

1 1000 0.01 20

ion beam pA - nA pA nA pA - nA

sputter rate medium low high medium

single pixel line [nm] 40 4 250 ~ 10

penetration depth Si [nm] 28 283 23 6



Penetration depth in silicon 

SRIM simulations



Penetration depth in silicon

SRIM simulations



FIB systems @ NSC

Ga FIB Cs FIB

FEI Helios 650 NanoLab DualBeam ZeroK Cs LOTIS 



comparing Ga FIB and Cs FIB

- imaging
• resolution
• depth of focus
• material contrast
• crystal orientation contrast

- deposition of platinum
- milling

• silicon
• silver

Outline



Imaging

graphite pen 

SE images taken with Cs ion beam @ 16 kV

eye of a fly broken drill



Resolution

Ga ion image Cs ion image

graphite pen: magnification 10k x 

Cs @ 8 kV, 11 pAGa @ 30 kV, 7.7 pA



Resolution

Ga ion image Cs ion image

graphite pen: magnification 20k x 

Cs @ 8 kV, 11 pAGa @ 30 kV, 7.7 pA



Resolution

Ga ion image Cs ion image

graphite pen: magnification 50k x 

Cs @ 8 kV, 11 pAGa @ 30 kV, 7.7 pA



Resolution

Ga ion image Cs ion image

graphite pen: magnification 100k x 

Cs @ 8 kV, 11 pAGa @ 30 kV, 7.7 pA



Depth of focus

height 40, 80, and 120 µm

SEM image: woodpile made of photo resist acrylate



Depth of focus

Ga ion image Cs ion image

wood pile height 120 µm



Material contrast

Ga ion image

2 µm

electron image

cross section of GaAs and AlGaAs layer



Material contrast

Cs ion image

Pt layer: contrast of Ga negative of Cs: dark <-> light  

2 µm

Ga ion image



Material contrast

Cs ion image

2 µm

Ga ion image

Pt layer contrast of Ga inverted to Cs: dark <-> light  



Crystal orientation contrast

Ga ion image Cs ion image

unpolished cross section of a piece of steal: 100Cr6

1 µm



Deposition of platinum

Cs @ 16 kVGa @ 30 kV

- platinum deposition on Si @ different current densities
- rectangle 1.5 µm x 10 µm
- cross section of the deposited layers
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Deposition of platinum

- Cs has a higher
growth rate:

- best current density
• Ga: 6 pA/µm2

• Cs: 16 pA/µm2
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Milling in silicon

expectation                              vs                                  reality



Milling in silicon

Cs @ 16 kV, 550 pAGa @ 30 kV, 430 pA

- dose test with Ga and Cs ions
- increasing depth from left to right
- rectangle 4 µm x 4 µm 



Milling in silicon

Cs @ 16 kV, 550 pA

- milling time almost the same: over all 20 min
- Ga: increasing depth uneven bottom
- Cs: almost flat bottom in the holes for all depth

Ga @ 30 kV, 430 pA



Milling in silicon

Cs @ 16 kV, 550 pA

- angle of sidewalls almost the same: around 8°
- Cs: rounder edges at the surface
- Cs: slightly larger as expected

Ga @ 30 kV, 430 pA



- polycrystalline silver layer
- often used for plasmonic structures
- “nightmare” using a Ga FIB

Milling in silver

Ga FIB



Ga @ 30 kV

- demonstration: plasmonic ring structures 
- no problem in silicon
- inhomogeneous milling in polycrystalline silver

Milling in silver

Si Ga @ 30 kV Ag



Penetration depth in silver

SRIM simulations



Ga @ 30 kV, 2500 pA

- dose test with Ga and Cs ions in 1100 nm silver layer on silicon 
- increasing dose from left to right
- rectangle 20 µm x 20 µm 

Milling in silver

Ag Cs @ 16 kV, 470 pA Ag



- second highest dose: some silver left
- milling time almost the same: over all 20 min
- Ga current 5 times higher than Cs current

Milling in silver

Ag AgGa @ 30 kV, 2500 pA Cs @ 16 kV, 470 pA



- cross section of area wit highest dose
- Ga: bottom is very uneven
- Cs: bottom almost flat

Milling in silver

Ag AgGa @ 30 kV, 2500 pA Cs @ 16 kV, 470 pA



Milling in silver

Ag Ag

- cross section of area wit highest dose
- Ga: bottom is very uneven
- Cs: bottom almost flat

Ga @ 30 kV, 2500 pA Cs @ 16 kV, 470 pA



- plasmonic structures 
- Ga: inhomogeneous milling in polycrystalline silver
- Cs: significant better rings

Milling in silver

Ga @ 30 kV, 230 pA Cs @ 16 kV, 130 pA



Summary
- higher depth of focus
- better material contrast
- milling in Si and Ag is different compared to Ga 

Outlook
- testing different materials
- milling and measure “real” plasmonic structures
- optimizing the Cs FIB

• size scaling
• milling and deposition parameters
• getting rid of teething problems 

- implementing pattern generator
- open for cooperation

Summary and Outlook



www.nsc.uni-kl.de



Material contrast

Cs ion image

2 µm

Ga ion image

cross section of InAs and AlSbAs layer



Material contrast

2 µm

cross section done with Ga: not “clean”, dots, layers damaged 

Cs ion imageGa ion image



Material contrast

2 µm

GaAs/AlGaAs layer: higher Ga beam better contrast, destroying cross section   

Cs ion imageGa ion image



Milling in silicon

Cs @ 16 kV, 470 pA

- milling time: Ga over all 12 min, Cs over all 24 min
- dwell time increasing from left to right
- number of loops decreasing -> total dose equal

Ga @ 30 kV, 790 pA



Milling in silicon

Cs @ 16 kV, 470 pA

- scan direction left to right
- Ga: 500 µs; Cs: 5000 µs uneven bottom
- dwell time stronger influence on Ga than Cs

Ga @ 30 kV, 790 pA



- 𝑝 =
ℎ

𝜆
=

ℎ𝑓

𝑐

- photon absorbed at resonance frequency
- doppler effect: frequency is lower
- atom is slowed down in one direction

Laser cooling

Cold atomic beam ion source for focused ion beam applications 
Journal of Applied Physics 114, 044303 (2013)
https://doi.org/10.1063/1.4816248
B. Knuffman, A. V. Steele, and J. J. McClelland 


