ZERCON NANOTECH

Applications of the Cesium Low Temperature Ion Source (LoTIS) *High Resolution FIB and SIMS*

<u>Adam V Steele</u>, zeroK Brenton Knuffman, zeroK AD Schwarzkopf, zeroK

adam@zeroK.com

Technology Highlights

LoTIS is a new Cs⁺ ion source AV Steele, et al., Nano Futures, Volume 1, Number 1 (2017)

A LoTIS FIB instrument has been built and tested

- Successful circuit edits on 10 nm node chips
- Imaging and milling demonstrations

LoTIS Beam Performance

- Demonstrated 2 nm spots with 1 pA, at 10 kV beam
- Provides currents >10 nA (so far)
- 1 kV to 18 keV

2

- Performs very well at low-energy relative to Ga⁺
- Yields large numbers of secondary ions

Available in FIB and SIMS variants

FIBSEM 2021

Cs⁺ LoTIS Pros/Cons

ZERØK

3

FIB:ZERO

Modified Thermo-Fischer v600 platform

2 nm resolution at 1 pA, 10 keV (2-3x better spot sizes and at 3x lower beam energy than LMIS)

<1 pA to 10+ nA

Platinum GIS (others available)

Generates secondary ion images as well

Demonstrations available

Spot Sizes Selected Beam Energies and Currents

Results from Normal FEI FIBs (FIB200, v600)

No apertures used

Note: Results given as a σ

•
$$R_{35-65} = \frac{\sigma}{1.3}$$
,

•
$$R_{16-84} = \sigma * 2$$

Energy (keV)	Current (pA)	Spot Size (1- σ nm)
18	1.5	<2
18	1,000	150
10	2	<2
8	80	46
8	1,200	343
8	10,000	700
4	1.2	11
2	1.5	32
1	2.0	36
1	50	660
1	1,000	2900
1	10,000	4000

5kV FIB imaging: LoTIS vs LMIS

Ga⁺ LMIS: 1 pA 5 kV

Cs⁺ LoTIS: 1 pA 5 kV

Easily seen channeling contrast in LoTIS image. Improved resolution at low energy (LoTIS: ~3-4 nm)

Depth of Focus Comparison →LoTIS depth of focus substantially better than Ga

Ga⁺ LMIS (30 kV)

Cs⁺ LoTIS (10 kV)

"Wood Pile" Height 120 µm

ZERØK

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Milling Homogeneity: 150 nm Au on Si \rightarrow Cs⁺ LoTIS proves even touchdown

Milled with Ga⁺ LMIS

Milled with Cs⁺ LoTIS

ETD SE

3.8 mm

35 000 x

5 92 um

TU Kaiserslautern NSC T. Loebe

- milled rectangle 'almost through' the Au layer
- milling time Ga and Cs almost the same

Milling Accuracy: 110 nm Au on Si \rightarrow LoTIS provides clean mill boxes with sharp corners

Milled with Ga⁺ LMIS

Milled with Cs* LoTIS

- squares with 1, 0.6, 0.4, 0.2, 0.1 and 0.05 μm length
- milled through the Au layer
- milling time Ga and Cs almost the same

Secondary Electron, Ion Images

Pencil lead, 20 um FOV. Comparison of secondary electron (left) and secondary ion modalities (right).

Graphite has a low sputter rate, while the dust particle has a high sputter rate and/or high yield of positive ions.

Pain Points of Elemental Analysis Techniques ZERO

EDX/EELS

- Long Sample Prep Times
- 3D analysis infeasible
- Low-Z elements Challenging

Site-Spec. SIMS

- Resolution >50 nm (eg NanoSIMS)
- Low yields with high-resolution beams (eg Ga, He, Ne)
- Long acquisition times
- Can't view all elements at once
 - (Loss of information)

These points are addressable By LoTIS:

- Nanometer resolution
- High Secondary Ion Yield
- Integrated Sample Prep and Analysis capability

SIMS:ZERO Overview

Single-Beam FIB with high-efficiency collection of secondary ions

Multiple imaging modalities:

• Electrons, +lons, -lons

Performance compared with industry standard Cs focused beam SIMS

- 100x more current/area
- 10x better resolution (down to ~5 nm in non-abundance limited cases)

Primary Ion Species Matters

Differing Sputter Rates \rightarrow Analysis Time

Differing interaction Volumes \rightarrow Resolution

Differing Yields \rightarrow Sensitivity Floor

FIBSEM 2021

SIMS:ZERO Preliminary First Data

CIGS (CuInGaSe) solar cell, ~90 um FOV

SIMS:ZERO readily sees low-Z elements

TiO2 anatase nanoparticles on Si wafer

LiTiO particles on InP wafer

Application Example: SIMS:ZERO as EDX Alternative

EDX elemental analysis is capable of few-nm resolution and can image the majority of elements well, but sensitivity is limited to a few tenths of a percent and sample prep is time consuming

Historically, SIMS has offered excellent (ppm) sensitivity but limited lateral resolution

Now, SIMS:ZERO enables creation of elemental maps with both few-nm resolution and excellent sensitivity without lamella preparation

These capabilities also make possible the creation of 3D elemental maps

Existing Workflow - Thin Sample EDX

Only one shot : analysis limited to a single depth

Optimized Workflow - SIMS:ZERO

SIMS:ZERO Impacts

Features

- Cs⁺ beam with nanometer resolution
- Full-featured FIB system
- Highest-Resolution SIMS
- Parallel readout of all masses (future upgrade)

Benefits

- Obtain EDX-like spectra... without lamella Prep
- Gather SIMS data 100x faster
- Machine with higher precision
- Endpoint using mass spectra
- SIMS process control during nanofabrication

